
18

Integrating Testing into Software Engineering Courses Supported
by a Collaborative Learning Environment

PETER J. CLARKE and DEBRA DAVIS, Florida International University
TARIQ M. KING, North Dakota State University
JAIRO PAVA, Florida International University
EDWARD L. JONES, Florida A&M University

As software becomes more ubiquitous and complex, the cost of software bugs continues to grow at a staggering
rate. To remedy this situation, there needs to be major improvement in the knowledge and application of
software validation techniques. Although there are several software validation techniques, software testing
continues to be one of the most widely used in industry. The high demand for software engineers in the
next decade has resulted in more software engineering (SE) courses being offered in academic institutions.
However, due to the number of topics to be covered in SE courses, little or no attention is given to software
testing, resulting in students entering industry with little or no testing experience.

We propose a minimally disruptive approach of integrating software testing into SE courses by providing
students access to a collaborative learning environment containing learning materials on testing techniques
and testing tools. In this article, we describe the learning environment and the studies conducted to measure
the benefits accrued by students using the learning environment in the SE courses.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—Testing tools;
K.3.1 [Computers and Education]: Computer Uses in Education—Collaborative learning

General Terms: Experimentation

Additional Key Words and Phrases: Course management, code coverage, software testing, unit testing,
testing tutorials

ACM Reference Format:
Peter J. Clarke, Debra Davis, Tariq M. King, Jairo Pava, and Edward L. Jones. 2014. Integrating testing
into software engineering courses supported by a collaborative learning environment. ACM Trans. Comput.
Educ. 14, 3, Article 18 (October 2014), 33 pages.
DOI: http://dx.doi.org/10.1145/2648787

1. INTRODUCTION

Software bugs continue to have an impact on industry, ranging from space exploration
to financial businesses [Wikipedia 2012]. One business recently impacted by a software
bug was the Knight Capital Group. It is estimated that as a result of a software bug,
$440 million was lost in less than 1 hour due to the execution of a series of automatic

This work is supported by the National Science Foundation under grants DUE-0736833 and DUE-1225742
(FIU), and grant DUE-0736771 (FAMU). Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.
Authors’ addresses: P. J. Clarke, D. Davis, and J. Pava, School of Computing and Information Sciences, Florida
International University; emails: clarkep@cis.fiu.edu, dledavis@cs.fiu.edu, jpava001@fiu.edu; T. M. King,
Department of Computer Science, North Dakota State University; email: Tariq.King@ndsu.edu; E. L. Jones,
Department of Computer and Information Sciences, Florida A&M University; email: ejones@cis.famu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1946-6226/2014/10-ART18 $15.00
DOI: http://dx.doi.org/10.1145/2648787

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

http://dx.doi.org/10.1145/2648787
http://dx.doi.org/10.1145/2648787

18:2 P. J. Clarke et al.

stock orders [CNN 2012]. As software becomes more ubiquitous and complex, and
increases in size, major improvements in the knowledge and application of software
validation techniques are needed [CNSS 2005; Gallaher and Kropp 2011]. One of the
key requirements necessary to achieve these improvements is more and better trained
professionals in the area of software validation. To create a workforce better trained in
software validation techniques, curricula at academic institutions need to be updated
to include instruction on the various software validation techniques, including software
testing.

During the past decade, computer science (CS) and information technology (IT) ed-
ucators have made an effort to integrate software testing into the CS/IT curricula
at several academic institutions [Desai et al. 2009; Dvornik et al. 2011; Janzen and
Saiedian 2006; Edwards 2003; Frezza 2002; Kaner et al. 2001; Jones 2000]. These
approaches range from the integration of testing into CS1 and CS2 using novel ap-
proaches, such as test-driven learning (TDL) and test-driven development (TDD), to
the restructuring of more advanced CS/IT courses to include a software testing compo-
nent. Lethbridge et al. [2007] state that more academic institutions are offering courses
in software engineering (SE), which is a good thing; however, more needs to be done
to expose students to software testing techniques, testing practices, and testing tools
[ACM/IEEE-CS Interim Review Task Force 2008; Astigarraga et al. 2010; Shepard
et al. 2001].

In this article, we describe a minimally disruptive approach to integrating software
testing into SE and upper-level programming courses. We use the term minimally
disruptive because we do not expect instructors who use the approach to make major
changes in their current teaching strategies. This provides an advantage to instructors,
making it easier for them to integrate our approach into their curriculum, and thus
making it more likely to be adopted and useful for a large number of institutions. This
project started 5 years ago with the idea of providing students with access to an online
repository of tutorials on software testing tools that would supplement the instruction
on testing provided in class. Since then, the project has evolved into a cyberlearning
environment that provides learning materials on both testing concepts and tools.

The initial online repository created in the project was the Web-Based Repository of
Software Testing Tools, version 1 (WReSTT V1), which contained tutorials on software
testing tools and links to other learning resources on software testing. Based on the
feedback from students and instructors, as well as the results of several studies per-
formed by the authors [Clarke et al. 2010, 2011, 2012], WReSTT V1 was transformed
from a simple repository of software testing tool tutorials to a collaborative learning
environment that contains a broader array of tutorials on testing concepts and testing
tools (WReSTT version 2 (V2)) [WReSTT Team 2012].1

This article extends the prior work presented by Clarke et al. [2010, 2011, 2012],
which describes (1) the design of WReSTT V1 and the preliminary studies on students’
perceptions of using the resources in WResTT V1 to improve their testing skills [Clarke
et al. 2010]; (2) the initial design of WReSTT V2 and the results of studies to evaluate
the implementation of the collaborative learning environment [Clarke et al. 2011]; and
(3) an extension of the WReSTT V2 design that include features to (a) create course
templates for instructors and (b) support an instructor’s ability to load class rolls, create
virtual teams, and access student reports [Clarke et al. 2012]. Additional details of the
prior work are presented in Section 5 of this article.

The contributions of this work are as follows: (1) provide a more comprehensive
description of the high-level structural design of WReSTT V2 and (2) discuss a more
extensive study to determine the impact of using the resources of WReSTT V2 to

1http://wrestt.cis.fiu.edu/.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

http://wrestt.cis.fiu.edu/

Integrating Testing into Software Engineering Courses 18:3

improve students’ testing skills in SE courses. It is important to stress that the ap-
proach reported in this article is focused on students in an SE class where there is
limited time to address testing concepts in the course. The WReSTT V2 structural
design is provided so that instructors can develop a similar collaborative learning en-
vironment for a specific domain of their choice, or simply use the facilities provided by
WReSTT to support the instruction of testing in their classes.

The study consisted of two control and two treatment groups, and the objectives of
the study focused on students’ improvements in general knowledge of software testing,
knowledge and use of testing techniques, knowledge and use of testing tools, usability
of WReSTT V1 and V2, and the impact of the collaborative learning environment
on their ability to use testing tools in their team project. The results of the study
indicate that using WReSTT in SE classes can improve students’ general knowledge
of software testing techniques and tools. In general, students found WReSTT engaging
and enjoyable to use, with students having a positive view of WReSTT V2. Finally,
students who were exposed to WReSTT were more likely to use testing tools during
their SE project.

The remainder of the article is structured as follows. Section 2 provides background
on software testing and collaborative learning. Section 3 introduces WReSTT, focus-
ing more on the structure and functionality of the current version of WReSTT (V2).
Section 4 describes the study comparing the improvement in students’ testing skills
when using WReSTT. Section 5 describes the related work on the approaches used
to introduce testing into programming courses and the online resources that contain
learning materials on software testing. Section 6 concludes the article by describing a
summary of the results of the study and future directions for WReSTT.

2. BACKGROUND

In this section, a brief background of software testing is provided to introduce some
of the key concepts related to the work presented in this article. These concepts in-
clude the different levels of testing, the view of the component to be tested, and the
coverage criteria used during testing. In addition, we introduce collaborative learning,
problem-based learning (PBL), and gamification—three key learning strategies used
in designing WReSTT.

2.1. Software Testing in an SE Course

There are several definitions for software testing; however, the one that we use is from
Software Engineering Body of Knowledge (SWEBOK) [Bourque and Dupuis 2004]. The
definition states that software testing is the “dynamic verification of the behavior of a
program on a finite set of test cases, suitably selected from the usually infinite execu-
tions domain, against the expected behavior.” Implicit in the definition is the execution
of a program under specified conditions, observing and/or recording the results of the
program execution, and making an evaluation of some aspect of the program based on
various characteristics of the implementation. There are many facets to testing, includ-
ing the testing levels (unit, integration, system), the objectives of testing (regression,
acceptance, alpha), testing focusing on nonfunctional requirements (usability, security,
performance), the view of the component to be tested (white box, black box, grey box),
and the coverage criteria used to determine the effectiveness of testing (function, con-
trol flow, and dataflow) [Ammann and Offutt 2008; Binder 1999; Bourque and Dupuis
2004; Mathur 2008; Myers 2004].

As the size and complexity of software has grown, the use of tools to support the
testing process has become essential. Perry [2006] states in his book on software testing
that the use of tools should always be mandatory. Using tools in the classroom helps
students understand and reinforce many software testing concepts, as well as improve

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

18:4 P. J. Clarke et al.

their practical testing skills. For example, using JUnit [Gamma and Beck 2012] helps
students improve their practical skills for setting up/tearing down a test environment,
writing stubs and drivers, and using the assert statement to compare the actual and
expected results for a test case. The use of coverage tools also helps students improve
their test case writing skills because they always strive to get better code coverage with
the new test suite.

Teaching software testing in an SE course is usually a challenge for the following
reasons: (1) there are usually too many other topics to cover in an SE course, (2) many
SE instructors are not familiar with software testing techniques, and (3) students and
instructors are not familiar with the tools available to support software testing. A
quick scan of several SE textbooks [Bruegge and Dutoit 2009; Pfleeger and Atlee 2009;
Sommerville 2004] will reveal the large number of topics to be covered in an intro-
ductory SE course. In addition, many of the software development models presented
in these textbooks usually cover software engineering topics such as requirements
elicitation and analysis, systems and detailed design, and implementation, which are
considered to be more glamorous than testing [Cowling 2012].

2.2. Collaborative Learning

Smith and MacGregor [1992] state that collaborative learning represents several edu-
cational strategies that involve intellectual effort by students or students and teachers
working together. These educational strategies vary widely but focus mainly on stu-
dents’ exploration or application of course material, not on the presentation of the
material by the teacher. Smith and MacGregor also state that collaborative learning
promotes several goals of education, including involvement, in which students are more
involved in the learning process by interacting more with other students and teachers;
cooperation and teamwork, in which students working together will be confronted with
different views and will therefore need to resolve these differences and build consen-
sus in their teams; and civic responsibility, which encourages students to participate
in shaping their ideas and values.

Teaching SE lends itself to collaborative learning due mainly to the project, which is
usually an inherent part of the course. Several studies have shown how collaborative
learning and other pedagogical strategies can be integrated into SE courses. Shim
et al. [2009] describe an approach to promote collaborative learning in an SE course
using a PBL strategy. The authors’ approach is based on integrating the following
PBL characteristics into the software process, particularly in the development of the
course project. These PBL characteristics include (1) the use of real-world problems,
(2) encouragement of students’ active participation, (3) integration of diverse view
points, (4) encouragement of self-oriented learning, (5) encouragement of collaboration,
and (6) enhancement of education quality.

One other learning approach that we incorporate in WReSTT is gamification—that
is, using game design elements and game mechanics to increase user experience and en-
gagement with a system [Domı́nguez et al. 2013]. Malone [1980] did some of the earlier
work on emphasizing how attributes of games can be used in an educational context.
More recent work by Li et al. [2013] describes how gamification is used to engage
CS students in an online social network–based collaborative learning environment,
PeerSpace, to enhance CS student learning in several CS courses. The game mechanics
used in PeerSpace include participant points, participation levels, and leader boards.
We use these attributes of gamification in WReSTT to improve student engagement.

3. USING WReSTT TO IMPROVE SOFTWARE TESTING PEDAGOGY IN SE COURSES

In this section, we describe the evolution of Web-Based Repository of Software Testing
Tutorials(WReSTT V2), its current design, and how it may be used in the classroom.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

Integrating Testing into Software Engineering Courses 18:5

WReSTT was initially designed to support the pedagogical needs of students and in-
structors in programming and SE courses by providing access to a comprehensive and
up-to-date set of tutorials on tools that aid software testing. Based on the feedback
from students and instructors, WReSTT has evolved into a collaborative learning envi-
ronment with social networking features. WReSTT is available for use by instructors
either by accessing it via the Internet (http://wrestt.cis.fiu.edu/) or by requesting assis-
tance from the authors if they want to install an implementation at their institution.
Note that in WReSTT V2, the last “T” in WReSTT represents “Tutorials,” not “Tools”
as in WReSTT V1.

3.1. WReSTT Evolution

WReSTT V1 [Clarke et al. 2010] was developed in 2008 based on a four-tier architecture
and implemented using Drupal [Drupal Community 2012], a content management
system. The data store tier contains tables of data on the users, tools, forum messages,
and other feedback from users. The application logic tier contains an email module, a
ratings module for the tools, and a module to analyze usage (e.g., access to tutorials
and user page access). The presentation tier generates pages for and interprets data
from the different categories of users. These categories are administrators, developers,
instructors, and students. The client tier represents the interfaces displayed for the
various users.

WReSTT V1 only contains learning materials on tools to support software testing
that are classified by category, language, or test level. The categories of testing tools
include:

—Coverage: Tools that compute test coverage of program source code or requirements;
—Metrics: Tools that perform static analysis on the program source code;
—Plug-ins: Tools built as add-ons to an integrated development environment (IDE);
—Test execution: Tools that automatically run test cases on software; and
—Web: Tools that replicate or simulate user actions using a Web browser.

Currently, there are tools for two languages in WReSTT V1: CPP and Java. The
testing levels include unit, or tools that test basic software units (e.g., classes) in
isolation, and system/UI, or tools that test the software system as a whole from its
user interface. Table I shows a list of tools for which there are learning materials in
WReSTT V1.

The initial selection of tools to support instruction was based on four top-level criteria:
(1) tools for each of the two most popular programming languages currently used in
CS and IT programs, CPP and Java [Chen et al. 2005]; (2) the results of evaluating
tools based on a set of low-level criteria, such as usability, vendor/developer support,
system requirements, supporting documentation, and feature support [Crowther and
Clarke 2005]; (3) tools for different languages belonging to same family of testing tools,
such as the xUnit family: CppUnit and JUnit; and (4) tools that use different testing
approaches, such as unit testing, code coverage, and systems testing. Clarke et al.
[2010] provide additional details on WReSTT V1.

During fall 2009, a pilot study was conducted on the undergraduate SE I class at
Florida International University (FIU) to obtain feedback on WReSTT V1. Students
were administered a survey at the end of the course, and the results indicated that the
following changes were needed:

(1) The interface to WReSTT should have more of a social networking tool feel (e.g.,
Facebook [Facebook Team 2012]);

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

http://wrestt.cis.fiu.edu/

18:6 P. J. Clarke et al.

Table I. Tools in WReSTT V1

Name Classification Language Description
Cobertura Coverage Java Free Java tool that calculates the percentage of code

accessed by tests [Cobertura Team 2012]
CppUnit Test Execution,

Unit
C++ C++ unit testing framework [Feathers 2012]

EclEmma Coverage,
Plug-in, Java

Java Free Java code coverage tool for Eclipse [Hoffmann
2012]

JDepend Metrics Java Tool that traverses Java class file directories and gen-
erates design quality metrics for each Java package
[Clark 2012]

JUnit Plug-in, Test
Execution, Unit

Java Unit testing framework for the Java programming
language [Gamma and Beck 2012]

SWAT Test Execution,
Web, System/UI

— Simple Web Automation Toolkit (SWAT) is a library
written in C# designed to provide an interface to in-
teract with several different Web browsers [Ultimate
Software 2012]

Rational Func-
tional Tester

Test Execution,
Web, System/UI

Java, VB
.NET

Automated functional and regression testing tool
[IBM 2012]

(2) There should be a competition for bonus points between project teams when they
access the software testing tutorials and complete the quizzes embedded in the
tutorials; and

(3) There should be additional tutorials on the basic concepts of testing.

One of the students in the class, Jairo Pava, was very interested in the WReSTT project
and became a member of the development team that coordinated the next version of
WReSTT.

Instructor feedback was obtained during two workshops held to introduce CS/IT
instructors to software testing concepts and tools, as well as in using the features
of WReSTT V1. The workshops, titled Workshop on Integrating Software Testing into
Programming Courses (WISTPC), were held at FIU during March 2009 [Clarke et al.
2010] and June 2010.2 The first workshop was attended by 17 instructors from 12
academic institutions and the second workshop by 15 instructors from 12 academic
institutions. During the workshops, instructors identified the need to access reports
containing (1) student activities in WReSTT, such as which tutorials they were viewing
and the comments/questions posted to the forums, and (2) the scores obtained on the
quizzes associated with the tutorials.

3.2. WReSTT V2 Design

Based on feedback from students and instructors on WReSTT V1, the second version,
WReSTT V2, was developed, which included collaborative learning and classroom man-
agement features. The four-tier architecture continues to be used, but the functionality
was restructured as shown in Figure 1. The main components in WReSTT V2 are as
follows:

—Authentication: Provides user with the ability to access the system using their
credentials

—Social: Allows users to access the social networking features such as creating a user
profile, monitoring the activity stream, posting comments to the discussion boards,
and monitoring virtual points assigned to users in their respective classes

2http://wrestt.cis.fiu.edu/events.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

http://wrestt.cis.fiu.edu/events

Integrating Testing into Software Engineering Courses 18:7

Fig. 1. Block diagram of WReSTT V2 [Clarke et al. 2010, 2012].

—Learning content: Contains the tutorials and quizzes on various testing topics and
tools to support testing. Note that this component can be replaced for other specific
knowledge areas, such as software modeling or programming concepts

—Administration: Provides developers and moderators with the ability to update con-
tent (e.g., tutorials), generate system-wide reports, monitor and update users’ access
of the system, and configure the system (e.g., creating new queries to generate new
report based on request from instructors)

—Course management: Provides administrators with the ability to create new courses
and instructors to upload class rolls and generate reports

There is a legend at the bottom of Figure 1 that shows the various categories of users,
where the order of increasing access to users is unauthorized, student, instructor, and
administrator. Any module inherits the access from its parent and includes new access
from that point forward in the hierarchy. Additional aspects of the new structure of
WReSTT V2 will be described in the subsequent sections.

Collaborative learning. Based on the feedback from WReSTT V1 users, WReSTT V2
incorporated the concepts of collaborative learning [Smith and MacGregor 1992], on-
line learning communities (OCLs) [Hiltz 1998], and aspects of gamification [Domı́nguez
et al. 2013]. The collaborative learning component in WReSTT V2 is based mainly
on student involvement, cooperation, and teamwork throughout the learning process
[Smith and MacGregor 1992]. WReSTT V2 primarily achieves student involvement,
cooperation, and teamwork by rewarding students with virtual points, requiring team
members to collaboratively participate in various activities in a timely manner, and
providing opportunities for social engagement. Social engagement includes course dis-
cussion forums and activity streams, among other features. Virtual points are awarded
for individual activities, as well as team activities where all team members must
complete the activity for the team to be awarded points. Although virtual points are
independent of the course grade, it is recommended that instructors use the virtual
points as a small part of the course grade.

WReSTT V2 provides individual and collaborative learning strategies (see the box la-
beled 3.1 in Figure 1) that are incorporated in the way users access the testing tutorials
and quizzes. Independent of the learning strategy, all students are required to com-
plete all tutorials on testing concepts and tools, and are awarded virtual points based,
in part, on the scores obtained on the quizzes. If the user is engaged in a collaborative

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

18:8 P. J. Clarke et al.

strategy, then each student is still required to complete all quizzes; however, quizzes for
each team member are generated by selecting appropriate questions from a test bank.
Virtual points for quizzes are awarded based on the number of correct answers and the
completion time. This is particularly important when using a collaborative strategy,
since all the team members are awarded the same number of points, and the points are
awarded after the last team member, with respect to time, completes his or her quiz.

In addition to the virtual points awarded to users for the tutorials and quizzes, points
are also awarded on an individual basis when users participate in the various social
engagement activities. These activities include creating a user profile, which involves
uploading a picture; posting questions and comments to the discussion forums; and
answering questions posted to the forums. Figure 2 shows one of the student pages
from the fall 2011 undergraduate software testing class that used the collaborative
learning strategy.

The main student interface is shown in Figure 2 and consists of four sections. The top
section shows the tabs to the main components of the Web site. The upper left section
of the page shows a picture of the logged-in user (in Figure 2, it is a student from the
fall 2012 class, Enmauel Corvo, owner of the page), and below the picture is the sidebar
menu. The upper right section of the page shows the pictures of other members of the
team, and below the pictures are links to other testing Web sites. The center of the
page in Figure 2 is divided into four sections: top, provides students with the ability to
browse the featured tutorial or browse other tutorials; middle left, a list showing the
current point leaders in the class; middle right, active discussion forum with the most
recent entries shown; and bottom, the activity stream showing a log of all activities
being performed by student in the class.

Collaboration in the OLC supported by WReSTT V2 occurs both at the class level
and, as described previously, at the team level. The entire class has real-time access
to the active discussions occurring in the forum, where any student in the class can
participate in the discussion. In addition, all students in the class can view the activities
occurring in WReSTT V2 in real time. These activities include the Point Leaders, Active
Discussion, and Activity Stream shown in Figure 2. Note, however, that the focus of the
collaboration in WReSTT V2 targets the virtual teams, which may map to actual class
project teams.

Course management. The right-most modules of Figure 1—that is, those modules
with a prefix of 5—are part of the course management component. These modules are
as follows:

—Template: Provides the administrator with the ability to create templates for a par-
ticular course that can then be used by instructors at various academic institutions;

—Courses: Using a given template, instructors can upload the class rolls and assign
students to virtual teams; and

—Report: Provides instructors with the ability to generate reports for the students in
their classes, such as the virtual points for each student in a class, number of times
a particular student visited the tutorials, or the time it took the student to complete
a specified quiz.

Figure 3 shows two of the pages in the course management component for instructors.
Figure 3(a) shows the list of courses that has been assigned to the instructor by the
administrator. The top and left sections of the page are similar to the page shown in
Figure 2. The list of courses are shown in the center of the page, and the right section
shows current news related to WReSTT. Figure 3(b) shows the course management
for one of the instructor’s courses—in this case, Software Engineering - Spring 2012,
Section : U02. The functions include importing/exporting class rolls, viewing student

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

Integrating Testing into Software Engineering Courses 18:9

Fig. 2. A student’s home page in WReSTT V2.

reports, creating virtual teams, allocation of virtual points to each task, and viewing
the usage statistics for each student.

3.3. Using WReSTT in the Classroom

WReSTT can be used in a variety of ways based on the level of testing that is required
in the course. The authors have experience using WReSTT in SE and software testing
courses both at the graduate and undergraduate levels. In this section, we describe
how WReSTT could be used in SE courses similar to how it was used in the study
presented in the next section.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

18:10 P. J. Clarke et al.

Fig. 3. Course management pages. (a) List of instructor’s courses. (b) Instructor’s course management page.

WReSTT may be introduced in an undergraduate SE course using a minimally dis-
ruptive approach where instructors do not have to significantly change the content of
their syllabi or their teaching styles. Following is a summary of the steps an instructor
may take during the semester when using WReSTT in a class:

(1) Prior to the beginning of the semester, the instructor modifies his or her course
grading scheme to include some allocation of points for the virtual points awarded
by WReSTT to each student in the class.

(2) Early in the semester, the instructor introduces students to the features of WReSTT
and assigns them to virtual teams.

(3) For some set of assignments, the instructor requires students to submit a report
with each assignment containing the testing techniques used, test cases, test cov-
erage achieved using different criteria, and an explanation of any criteria for which
the specified coverage is not achieved.

(4) During the semester, the instructor monitors the postings to the forums and pro-
vides feedback to the virtual teams and the class, with respect to their participation
on completing the tutorials and quizzes.

Virtual points. Points are awarded to students in the class based on their individ-
ual effort and/or their team effort after the completion of various tasks. The individ-
ual points may be awarded for the following: (a) updating the student profile (e.g.,

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

Integrating Testing into Software Engineering Courses 18:11

uploading a picture), (b) posting at least one question/comment related to testing con-
cepts and testing tools to the forum, and (c) completing a tutorial and quiz set with
at least some predefined percentage (xx%) of correct answers. Note that there may be
multiple tutorial quiz sets assigned to the class. The team points are awarded based
on the time each team completed a tutorial and quiz set (at least xx% correct answers)
when compared to other teams. The instructor is free to assign any value for the pre-
ceding points by clicking on the Manage option under Points Rewards in the course
management screen shown in Figure 3(b).

WReSTT introduction. Depending on when the instructor plans to use testing in his
or her class (e.g., the introduction of the testing topics or the due dates for programming
assignments), the instructor can upload the class rolls 4 weeks prior to that time, assign
virtual teams, and briefly introduce students to the features in WReSTT. It is also very
important to explain how the virtual points will be awarded and how they will be
integrated into the course grade.

Assignments. In our SE courses, students are required to submit code at the end of
the semester as part of the final deliverable. Students are also required to demonstrate
the running software, and explain and demonstrate how the testing tools were used,
with respect to test automation and code coverage. The final project report includes a
description of the test plan (test cases, procedures used, and test results), testing tools
used, and code coverage achieved. If the required coverage is not achieved, students
provide an explanation for why this is the case. Due to the time allocated to the testing
in a SE course, it is not feasible to ask students to update the test set to improve
coverage and resubmit the project. Updating the test set to improve code coverage
works very well in software testing courses, since more time is spent on the different
approaches to testing.

Monitor teams. The instructor can monitor students’ interaction with WReSTT by
generating reports either on a per-student basis or for the entire class. The reports high-
light those students who have not completed a specific tutorial or quiz. These reports
are generated using the View option under Student Reports in the course management
screen shown in Figure 3(b). Our experience has shown that using the collaborative
learning approach encourages team members to complete the tutorial and quiz sets
since the entire team benefits from the bonus points.

An updated WReSTT V2 is available to the public, and WReSTT V1 is now retired.
Instructors may request access as an instructor so that they may use WReSTT in their
classes by contacting the WReSTT team (http://wrestt.cis.fiu.edu/).

4. EMPIRICAL STUDY

Over the past 3 years, we have conducted several studies to determine the impact
WReSTT has on student learning. Included were initial studies to assist us in deter-
mining the evolution of WReSTT [Clarke et al. 2010, 2011] and a preliminary study
evaluating both versions of WReSTT [Clarke et al. 2012]. In this section, we motivate
the study and identify the objectives of the study; describe the subject selection, exper-
imental design, and instrumentation; and present a detailed statistical analysis and
discussion of the results, including a validity evaluation [Basili et al. 1986; Trochim
2001; Wohlin et al. 2000].

4.1. Research Objectives

In Section 2.1, we identified several of the challenges of teaching software testing in
an SE course and other upper-level courses with a major programming component.
The overriding challenge is that there are usually too many topics to be covered in

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

http://wrestt.cis.fiu.edu/

18:12 P. J. Clarke et al.

Table II. Sample Used in the Study

Group Pre/Posttest WReSTT Survey
ID Class Enrollment Participation % Enrollment Participation %

Control Group:
CG1 CEN4010 SP11 36 18 50.0 — — —
CG2 CEN4010 SP12 32 17 58.6 — — —

Treatment Group:
TG1 CEN4010 SU11 25 22 88.0 25 23 92
TG2 CEN4010 SU12 15 15 100 15 15 100

CEN4010—Software Engineering I: SP1x—Spring 201x; SU1x—Summer 201x

these courses, and there is little or no time to teach testing. The WReSTT project
was developed to address this challenge by providing a minimally disruptive approach
to integrating software testing into SE and upper-level programming courses. The
key aspect of the project is that students supplement their classroom instruction by
accessing learning materials on testing concepts and testing tools available in WReSTT.
WReSTT has evolved from a simple repository providing tutorials on testing tools only
to a learning environment that contains tutorials and quizzes on testing concepts and
supports collaborative learning integrated with some social networking activities.

Based on our initial studies [Clarke et al. 2010, 2011, 2012], there are two factors
that affect the success of any approach that uses WReSTT to support learning. These
factors are as follows: (1) the approach should be minimally disruptive (i.e., requires
instructors to make little changes to the content of their syllabi or their teaching styles),
and (2) the approach should be attractive to students and motivate them to engage the
materials provided by WReSTT. The study presented in this section focuses on the
second factor—that is, students’ use of WReSTT. The objectives of the study are as
follows:

—Objective 1: Determine if students who use WReSTT as part of their undergraduate
SE course will have greater general knowledge of software testing than students who
do not use WReSTT.

—Objective 2: Determine if students who use WReSTT as part of their undergraduate
SE course will have greater general knowledge and skills in using software test
generation techniques than students who do not use WReSTT.

—Objective 3: Determine if students who use WReSTT as part of their undergraduate
SE course will have greater general knowledge of software testing tools than students
who do not use WReSTT.

—Objective 4: Determine if students who use WReSTT will find it engaging and enjoy-
able to use.

—Objective 5: Determine if students who use WReSTT will be more likely to employ
the use of software testing tools in their SE team project than students who do not
use WReSTT.

As stated previously, the time dedicated to testing in the SE course is limited; there-
fore, we do not expect students to iteratively improve their test suites based on the
code coverage results. However, we expect them to have an understanding of the effec-
tiveness of the test suite based on the results of code coverage.

4.2. Methods

Sample. Students from four SE I classes participated in the study. The classes were
(1) CEN4010 SP11—Spring 2011, (2) CEN4010 SU11—Summer 2011, (3) CEN4010
SP12—Spring 2012, and (4) CEN4010 SU12—Summer 2012. Table II shows a sum-
mary of the classes that participated in the study. A total of 72 subjects participated,

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

Integrating Testing into Software Engineering Courses 18:13

including two control groups, CG1 and CG2, containing 18 and 17 students, respec-
tively, and two treatment groups, TG1 and TG2, containing 22 and 15 students, re-
spectively. There was no difference in terms of course preparation and demographics
between the subjects in the control groups and treatment groups.

Measurement. Data for the study was collected using (1) two instruments, (2) arti-
facts from the team projects, and (3) logs from WReSTT. The two instruments were a
pre/posttest (see Appendix A) and a WReSTT survey (see Appendix B). The pre/posttest
was designed to identify students’ knowledge of testing prior to being taught the testing
topic in the SE class and being exposed to the learning materials in WReSTT (treat-
ment). It was again used to determine students’ knowledge after being exposed to the
class instruction and the treatment. The pre/posttest shown in Appendix A also con-
tains sample answers or guidelines for the answers to several of the questions, shown
in bold italics.

The pre/posttest, shown in Appendix A, consists of eight questions described as
follows:

—Q1 focused on the objective of program testing.
—Q2 involved the identification of testing techniques and writing test cases for a Java

method.
—Q3 and Q4 focused on the use of testing tools, identification of tools, and the classifi-

cations of tools for unit testing, functional testing, and code coverage.
—Q5 and Q6 focused on the knowledge of online testing resources and the type of

materials contained in the resources.
—Q7 and Q8 addressed the importance of using testing tools while working on pro-

gramming assignments.

The pre/posttest used in the preliminary studies prior to spring 2011 (the first control
group) [Clarke et al. 2010, 2011] was considered to be too subjective, so Q2 was added.
Note that the answers/guidelines for Q2(b) are broken down into four parts to simplify
the evaluation of the pre/posttest.

The WReSTT survey instrument, shown in Appendix B, consists of 30 questions
divided into five groups. These groups are described as follows:

—Q1 focused on the use of testing resources other than WReSTT.
—Q2 through Q15 focused on the overall reaction to the two versions of the WReSTT

Web sites. These questions were adapted from page 140 of Tullis and Albert [2008].
—Q16 through Q21 obtained feedback on the impact that using WReSTT had on learn-

ing testing concepts and testing tools.
—Q22 through Q26 obtained feedback on the impact that the collaborative learning

component in WReSTT V2 had on visiting the Web site and participation in team
activities.

—Q27 through Q30 provided the opportunity for feedback on WReSTT V1 and V2 using
the open-ended question format.

Q2 through Q26 were answered using the following Likert scale: 1 = Strongly Disagree,
2 = Disagree, 3 = Neither Agree nor Disagree, 4 = Agree, 5 = Strongly Agree.

The artifacts for the team project include a written system’s manual, a user’s guide,
and the source code. In the testing section of the system’s manual, students are required
to document the testing process, which includes the subsystems and systems test cases,
results of executing the test, and a description of any testing tools used. Each team
was required to demonstrate the execution of their software project at the end of the
semester and, if any testing tools were used, to demonstrate how the tools worked. This
demonstration was used to confirm the answers they provided during the posttest and
to evaluate their practical testing skills for the course.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

18:14 P. J. Clarke et al.

Design. The pre/posttest instrument was administered to the four different groups
shown in Table II. The main topics in the CEN4010 course are Requirements Elic-
itation, Requirements Analysis, Systems Design, Detailed Design, and Testing. The
students are evaluated based on two examinations and a semester team project con-
sisting of three deliverables. During the final deliverable, students are required to
present a live demonstration of the system, which includes demonstrating the use of
any tools used to support testing during development.

The pretest was administered prior to the testing part of the CEN4010 course (i.e.,
prior to week 8 of the semester), and the posttest was administered at the end of the
semester. Before administering the pretest, students were informed that the study
would not impact their grades and were not required to take the test. The control
(spring) and treatment (summer) groups were given the same class notes and used the
same textbook throughout the course. The only differences were (1) the instructors,
(2) the summer semester was 2 weeks shorter than the spring semester, and (3) the
treatment groups were exposed to WReSTT prior to the testing topic being taught in
the course. The answers/guidelines for the questions, shown in bold italics in Appendix
A, were used in the evaluation of the tests. The points allocated to each correct answer
are shown in italics above each answer.

The survey instrument was administered only to the classes in the treatment groups
(CEN4010 SU11 and CEN4010 SU11). Students in the treatment groups were intro-
duced to the two versions of WReSTT during weeks 8 (WReSTT V1) and 11 (WReSTT
V2) of the semester, respectively. Students were required to register on WReSTT
V1 individually, whereas the instructor registered students in WReSTT V2 based
on the teams to which they were assigned for the team projects. The project teams
were the same as the virtual teams in the study (note, however, that this did not have
to be the case). Students in the control groups were not exposed to WReSTT V1 or V2.

Prior to providing students access to WReSTT V2, they were informed of how the
virtual points would be awarded, which were on an individual as well as a team basis.
The individual points were awarded as follows: (a) updating the student profile (e.g.,
uploading a picture), 1 point; (b) posting at least one question/comment related to
testing concepts and testing tools to the forum, 1 point; and (c) completing the tutorial
and quiz with at least 80% correct answers, 1 point. The team points were awarded
based on the time in which each team completed the tutorial and quiz (with at least
80% correct answers) when compared to other teams. The points awarded to members
of the team completing the tutorial and quiz first was 8 points, second was 5 points,
and third was 5 points. The data used to allocate the virtual points to each student was
obtained by querying the WReSTT system logs. We also cross-checked the content of
the data logs with the responses in the WReSTT survey to see if there was a correlation.

At the end of the semester, the team project artifacts were reviewed and archived.
The artifacts were reviewed by at least two SE course instructors participating in
the study. The review process included checking the system’s manual and the source
code to identify the following: implementation language; if automated testing was
used; the unit, functional, and code coverage tool(s) used for automated testing; and
the recorded percentage of code coverage achieved. To support the claims made in the
system’s manual, students were required to demonstrate the tools used during the final
project presentation.

4.3. Results and Analysis

Pre/posttest. To evaluate the effects of the use of WReSTT on students’ knowledge and
understanding of software testing techniques and tools, students were administered a
pre- and posttest software testing assessment prior to the testing topic being taught
and at the end of each semester, respectively. For each assessment, students were

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

Integrating Testing into Software Engineering Courses 18:15

Table III. Overall Results of Pretest and Posttest

Pretest Posttest
Group N Mean SD Mean SD

(A) Control 35 12.83 8.41 11.29 8.91
Treatment 37 10.97 4.99 21.70 6.82

Measure Main Effects
Test (2) F(1,70) = 27.82, p < 0.01, students performed better on the posttest

Follow-up analysis: t(37) = −8.15, p < 0.01, shows significant difference be-
tween pre- and posttest scores in the treatment group, but not in the control
group

(B) Group (2) F(1,70) = 8.00, p < 0.01, students performed better in the treatment group

Measures Interaction
(C) Group, Test F(1,70) = 49.64, p < 0.01, significant interaction

Note: Section (A) reveals students’ mean scores and standard deviations on the software testing pre- and
posttests in the control and treatment groups. Section (B) presents the main effects of the the test and
group using a 2 (test group) × 2 (test) repeated measures ANOVA. Section (C) presents the interaction
between the test group and the test.

Fig. 4. General software testing knowledge mean scores.

given a score indicating their performance on the test. Preliminary results found no
significant differences in test scores between the two control groups (CG1 and CG2) or
between the two treatment groups (TG1 and TG2). Thus, participants were grouped
according to test group (control vs. treatment groups).

Tables III through VI show a summary of the results and analysis for the pre/posttest
for the control and treatment groups. Each table contains three sections: Section (A)
shows the mean and standard deviation for the score on the test; Section (B) shows
the main effects of the test using a 2 (test group) × 2 (test) repeated measures ANOVA
[Neter et al. 1990]; and Section (C) shows the interaction between the test group and
the test.

Table III and Figure 4 show the overall results of the pretest and posttest adminis-
tered to students in the study. Students in the treatment group, who used WReSTT,
performed significantly better on their posttests than students in the control group,
who did not use WReSTT. There was no significant difference between their pretest
scores, indicating that this difference was not due to differences in students’ knowl-
edge before taking the course or the semester. To look more closely at student achieve-
ment, the pre- and posttests were broken down into three general knowledge areas:
testing technique knowledge, tool usage, and tool proficiency level. Analyses were then
performed on each of these areas.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

18:16 P. J. Clarke et al.

Table IV. Summary of Results—Testing Technique Knowledge

Pretest Posttest
Group N Mean SD Mean SD

(A) Control 35 4.77 3.71 3.82 3.45
Treatment 37 5.22 3.68 6.43 3.78

Measure Main Effects
Test (2) F(1,70) = 4.17, p < 0.05, students from the treatment group, but not the control

group, tended to perform better on the posttest than the pretest
Follow-up analysis: t(37) = −1.92, p = 0.06, shows no significant difference,
between pre- and posttest scores in the treatment group, similarly for the
control group

(B) Group (2) F(1,70) = 4.17, p < 0.05, students performed better in the treatment group

Measures Interaction
(C) Group, Test F(1,70) = 4.172, p < 0.05, significant interaction

Note: Section (A) reveals students’ mean scores and standard deviations on the testing technique knowledge
pre- and posttests in the control and treatment groups. Section (B) presents the main effects of the the test
and group using a 2 (test group) × 2 (test) repeated measures ANOVA. Section (C) presents the interaction
between the test group and the test.

Testing technique knowledge. To indicate the level of each student’s knowledge of
testing techniques, a score was calculated by adding scores on Q1, Q2(a), and Q2(b) (see
Appendix A). The results in Table IV indicate that the use of WReSTT as a teaching tool
for students may improve their knowledge and use of software testing techniques. When
comparing the pre- and posttest scores of the treatment group alone, the differences
were close but did not quite reach significance (p = 0.06). Table IV Section (B) shows a
follow-up analysis using the two-test measure.

Testing tool usage. As can be seen in Table V and Figure 5, results indicate that the
use of WReSTT as a teaching tool for students can improve their knowledge and use
of software testing tools. These results were computed based on the answers for Q3,
Q4(a), and Q4(b) (see Appendix A). There was no significant difference between the
treatment and control group pretest scores, indicating that this difference was not due
to differences in students’ knowledge of testing tools before taking the course.

Tool proficiency confidence. One of the subquestions that we were interested in ex-
ploring was whether the use of WReSTT would improve not only students’ knowledge
and use of software testing tools but also their perceived proficiency in using these
tools (see Q4(b) in Appendix A). As can be seen in Table VI and Figure 6, students
in the treatment group reported greater software testing tool proficiency levels on
their posttests than students in the control group, as well as a significant increase in
proficiency from their pretests.

WReSTT user experience survey. Students in the treatment groups were addi-
tionally administered a survey at the end of the semester designed to assess their
perception of the ease of use and usefulness of WResTT. A total of 39 students partici-
pated in the survey. In Section 1 (Q1) of the survey (see Appendix B), 31% of students
(N = 12) indicated that they had previously used a learning resource other than
WReSTT to learn about software testing, whereas 44% (N = 17) indicated no use
of additional resources (26% of students, N = 10, did not respond to the question).
Students in the control groups were not administered the WReSTT survey, as using
WReSTT was part of the treatment and they would not have been exposed to any
version of WReSTT.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

Integrating Testing into Software Engineering Courses 18:17

Table V. Summary of Results—Testing Tool Usage

Pretest Posttest
Group N Mean SD Mean SD

(A) Control 35 0.66 1.85 0.74 2.09
Treatment 37 0.38 1.14 2.81 1.58

Measure Main Effects
Test (2) F(1,70) = 97.57, p < 0.01, students performed better on the posttest

Follow-up analysis: t(36) = −10.25, p < 0.01, shows significant difference
between pre- and post-test scores in the treatment group, but not the control
group

(B) Group (2) F(1,70) = 5.60, p < 0.05, students performed better in the treatment group

Measures Interaction
(C) Group, Test F(1,70) = 84.74, p < 0.01, significant interaction

Note: Section (A) reveals students’ mean scores and standard deviations on the tool usage pre- and posttests
in the control and treatment groups. Section (B) presents the main effects of the the test and group using a
2 (test group) × 2 (test) repeated measures ANOVA. Section (C) presents the interaction between the test
group and the test.

Fig. 5. Testing tool usage mean scores.

Overall reaction of WReSTT V1 and V2. Students’ overall reactions to both versions
of WReSTT were positive, with mean scores on questions in Section 2 (Q2 through
Q15) of the survey above 3.18 for V1, and above 3.62 for V2. Mean scores (and standard
deviation) for each question in Section 2 for both versions of WReSTT are shown in
Columns 4 and 5 of Table VII. Figure 7 shows the bar chart comparison of the mean
scores for the two versions of WReSTT. To compare student reactions to V1 and V2
of WReSTT, students’ responses to each question in Section 2 were analyzed using
the Wilcoxon signed-ranks test [Siegel and Castellan 1988]. The results, shown in
Column 6 of Table VII, revealed that except for Q8 and Q9, there was a significant
difference between students’ reactions to the two versions of WReSTT, where students
indicated a preference for WReSTT V2 over V1.

Perceived usefulness of WReSTT. As can be seen in Table VIII, students’ perceptions
of the usefulness of the tutorials available in WReSTT were also positive, with mean
scores above 3.38 for Q16, Q17, and Q18 in Section 3 (Q16 through Q21). Students’
responses to Q21, asking whether they would have used testing tools if WReSTT had
not existed, indicated that many would not (M = 2.92, SD = 1.3).

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

18:18 P. J. Clarke et al.

Table VI. Summary of Results—Perceived Testing Tool Proficiency

Pretest Posttest
Group N Mean SD Mean SD

(A) Control 35 2.67 4.51 2.77 4.43
Treatment 37 0.57 1.35 4.30 3.12

Measure Main Effects
Test (2) F(1,70) = 21.26, p < 0.01, students performed better on the posttest

Follow-up analysis: t(36) = −10.25, p < 0.01, shows significant difference
between pre- and posttest scores in the treatment group, but not the control
group

(B) Group (2) F(1,70) = 7.46, p < 0.01, students performed better in the treatment group

Measures Interaction
(C) Group, Test F(1,70) = 19.39, p < 0.01, significant interaction

Note: Section (A) reveals students’ mean scores and standard deviations on the perceived tool proficiency
pre- and posttests in the control and treatment groups. Section (B) presents the main effects of the the test
and group using a 2 (test group) × 2 (test) repeated measures ANOVA. Section (C) presents the interaction
between the test group and the test.

Fig. 6. Perceived tool proficiency mean scores.

Perceived usefulness of collaborative learning environment. As can be seen in Table IX,
students indicated that the use of a collaborative learning environment in WReSTT was
a motivating factor in their learning, with mean scores above 3.76 on Q22 through Q25
in Section 4 (Q22 through Q26) of the survey. They found that the collaborative learning
environment in WReSTT motivates them to visit the site and complete assignments.
As can be seen in Figure 8, students indicated at high levels that the use of virtual
points and event streaming encouraged both them and their fellow team members to
complete tasks in WReSTT.

In an attempt to validate the survey data obtained from the treatment groups, we
decided to review how the virtual points were allocated in the two SE classes. Note
that the virtual points were only allocated for the interaction with WReSTT V2. In the
SE summer 2011 class (TG1), all students (23) who took the survey received virtual
points. Based on the logs of the system, the virtual points were distributed as follows:
all students read the tutorial, and all students achieved a grade higher than 80% on
the quiz; 13 students posted messages to the forum with an average of 4 messages per
student; and all students uploaded a picture to WReSTT. For the SE summer 2012 class
(TG2), all students (15) who took the survey received virtual points. The distribution
of the points were as follows: 14 students read the tutorial, and 13 students achieved a

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

Integrating Testing into Software Engineering Courses 18:19

Table VII. Students’ Mean Scores (Standard Deviations) in Section 2 of the Survey Measuring Their Overall
Reactions to WReSTT V1 and V2

Q Version 1 Version 2 Wilcoxon Signed-
Overall Reaction to Web Sites N M (SD) M (SD) Ranks Test

2 Overall, I am satisfied with how easy it is
to use the Web site.

38 3.63 (1.0) 4.15 (0.9) z = −2.84, p < 0.01

3 It is simple to use the Web site. 38 3.76 (1.0) 4.15 (0.9) z = −2.78, p < 0.01
4 I feel comfortable using the Web site. 39 3.71 (1.0) 4.18 (0.7) z = −2.80, p < 0.01
5 It was easy to learn to use the Web site. 39 3.84 (1.0) 4.29 (0.8) z = −3.05, p < 0.01
6 I believe I became productive quickly using

the Web site.
39 3.65 (0.9) 3.97 (0.9) z = −2.18, p < 0.05

7 The information (such as online help, on-
page messages, and other documentation)
provided with the Web site is clear.

37 3.53 (1.0) 3.86 (1.0) z = −2.13, p < 0.05

8 It is easy to find the information I need. 39 3.46 (1.0) 3.62 (0.9) —
9 The information is effective in helping me

complete the tasks and scenarios.
38 3.78 (1.0) 4.03 (0.9) —

10 The interface of the Web site is pleasant. 38 3.53 (1.1) 4.29 (1.0) z = −3.89, p < 0.01
11 I like using the interface of this Web site. 39 3.32 (1.0) 3.92 (1.0) z = −3.51, p < 0.01
12 The Web site has all of the functions and

capabilities that I expect it to have.
39 3.37 (1.0) 3.69 (1.1) z = −2.07, p < 0.05

13 I believe that the Web site helped me earn
a better grade.

38 3.56 (1.0) 3.95 (0.9) z = −2.49, p < 0.05

14 I would recommend the Web site to fellow
students.

39 3.71 (0.8) 4.15 (0.8) z = −2.79, p < 0.01

15 Overall, I am satisfied with the Web site. 39 3.63 (0.8) 4.13 (0.9) z = −3.00, p < 0.01

grade higher than 80% on the quiz; 11 students posted messages to the forum with an
average of 1.5 messages per student; and all students uploaded a picture to WReSTT.

Review of team artifacts. Table X shows a summary of the data collected after
reviewing the team project artifacts for the control and treatment groups in the study.
The seven columns of the table represent the team number, the implementation lan-
guage for the project, the unit testing tools used, code coverage tools used, number
of test cases written (system and subsystem), and percentage code coverage achieved.
The rows in the table are divided into four groups, the top two for the control groups
and the next two for the treatment groups.

As shown in Table X, none of the teams in CG1 used tools during the testing phase of
their projects, and only one team in CG2 used JUnit during testing. In contrast, both
treatment groups used tools to test the code they developed, with all five teams in TG1
and two out of four in TG2 using testing tools in their projects. Three teams from the
treatment groups used code coverage tools to check the quality of their test suites. It
is interesting to note that students used testing tools for which there were no tutorials
in WReSTT. These tools included Visual Studio Unit Testing Tool [Microsoft Corpora-
tion 2013], PHPUnit [Bergmann 2013], OCUnit [Sen:te 2013], and Xcode CoveryStory
[CoverStory Team 2013].

Team 5 of TG1 wrote 18 system test cases with a pass rate of 89% (16 of 18 passing)
and 9 subsystem test cases with 100% pass rate. The code coverage reported by Cober-
tura for the subsystem test cases was 93% or 103/110 LOC and 79% or 27/34 branches
for the storage component of the system. These results formed 16% of 682 LOC and
17% of 152 branches for the entire system. Note that students were instructed to test
only one subsystem due to time allocated to testing in the software project. The results
for TG2 Teams 2 and 3 can be explained in a similar manner to that of TG1 Team 5.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

18:20 P. J. Clarke et al.

Fig. 7. Overall reaction to WReSTT V1 and V2 mean scores.

That is, using 11 test cases, Team 2 obtained 68.8% of 648 LOC during subsystem
testing, and using 4 test cases, Team 4 obtained 32.4% of 689 LOC.

4.4. Discussion

Objective 1. Determine if students who use WReSTT as part of their undergraduate
SE course will have greater general knowledge of software testing than students who
do not use WReSTT.

The results shown in Table III and Figure 4 confirm and extend previous findings
showing improved student understanding and knowledge of software testing tech-
niques and tools by using WReSTT. The current studies involve students from four
different semesters (two control and two treatment) over the period of a year. The
consistency of the results across the groups regardless of the semester provide further
support that the findings are the result of the use of WReSTT itself and not an anomaly
of a particular semester or group of students. Thus, the use of WReSTT can increase
students’ general knowledge of software testing.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

Integrating Testing into Software Engineering Courses 18:21

Table VIII. Students’ Mean Scores (Standard Deviations) in Section 3 of the Survey Measuring Perception of the
Usefulness of Testing Tutorials in WReSTT

Q Testing-Related Questions N M (SD)
16 The tutorials in WReSTT helped me to better understand testing concepts. 39 4.38 (0.7)
17 The tutorials in WReSTT helped me to better understand how to use unit

testing tools.
39 4.00 (1.1)

18 The tutorials in WReSTT helped me to better understand how to use code
coverage testing tools.

39 3.38 (1.4)

19 The tutorials in WReSTT helped me to better understand how to use functional
testing tools.

39 2.87 (1.7)

20 The number of tutorials in WReSTT is adequate. 39 3.56 (1.0)
21 I would have used testing tools in my project if WReSTT did not exist. 39 2.92 (1.13)

Table IX. Students’ Mean Scores (Standard Deviations) of the Survey Measuring Usefulness of the Collaborative
Learning Environment in WReSTT

Q Collaborative Learning–Related Questions N M (SD)
22 The use of virtual points in WReSTT V2 encouraged

me to visit the Web site and complete the tasks.
39 4.54 (0.8)

23 The use of virtual points in WReSTT V2 encouraged
my team to visit the Web site and complete the tasks.

39 4.56 (0.7)

24 The event stream showing the activities of the other
members in the class encouraged me to complete my
tasks in WReSTT V2.

39 4.26 (0.9)

25 The event stream showing the activities of the other
members in the class encouraged my team to complete
my tasks in WReSTT V2.

39 4.38 (0.8)

26 Our team devised a plan to get the maximum number
of points in WReSTT V2.

38 3.76 (1.4)

Fig. 8. Perceived usefulness of collaborative learning environment mean scores.

In addition to looking at students’ general understanding of software testing, we were
interested in taking a more detailed look at students’ knowledge and use of software
test generation techniques (Objective 2) and tools (Objective 3). Looking at these areas
more closely can provide a more fine-tuned assessment of the efficacy of use of the
system and better inform the future direction of improvements for increased student
learning. It also helps to provide a better understanding of the depth of knowledge
gained by students who use the system.

Objective 2. Determine if students who use WReSTT as part of their undergradu-
ate SE course will have greater general knowledge and skills in using software test
generation techniques than students who do not use WReSTT.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

18:22 P. J. Clarke et al.

Table X. Review of the Team Artifacts Showing Those Teams That Used Testing Tools

Unit Testing Coverage % Code
Team Language Tools Tools # Test Cases (P/F) Coverage

System Subsystem

Control Groups:
CG1: Spring 2011—5 teams (no testing tools used)

CG2: Spring 2012—4 teams (3 of the teams did not use testing tools)
1 Java JUnit 8 (8/0) 16 (16/0)

Treatment Groups:
TG1: Summer 2011—5 teams

1 Java JUnit 21 (21/0) 8 (8/0)
2 C# Visual Studio

Unit Testing
Tool

18 (16/2) 9 (9/0)

3 Java, PHP JUnit, 18 (18/0) 20 (20/0)
PHPUnit

4 Java JUnit 18 (12/6) 26 (NR)
5 Java JUnit Cobertura 18 (16/2) 9 (9/0) 93% of 110

LOC, 79% of 34
branches

TG2: Summer 2012—4 teams (2 of the teams did not use testing tools)
2 Objective-C OCUnit Xcode/

CoverStory
27 (27/0) 11 (11/0) 68.8% of 648

LOC
3 Objective-C OCUnit Xcode/

CoverStory
24 (24/0) 4 (4/0) 32.4% of 689

LOC

NR, Not Reported.

As can be seen in Table IV, the pretest scores of the treatment groups were slightly,
although not significantly, higher than those of the control groups. Further, the posttest
scores of the control groups were actually slightly lower than their pretest scores,
although, again, it was not a significant difference. Looking at this superficially, one
might suggest that this indicates there might have been some initial difference between
the two groups. As those differences were not significant, we reject that argument.

Nevertheless, these possibly conflicting findings indicate that although the use of
WReSTT may improve students’ knowledge of testing techniques, further research
should be conducted. Further study or more refined measures may shed more light
in this area. Alternately, it may be that more content in this area should be added to
WReSTT or that changes to how the resources currently in WReSTT are used might
help students improve their knowledge in this area.

Objective 3. Determine if students who use WReSTT as part of their undergraduate
SE course will have greater general knowledge of software testing tools than students
who do not use WReSTT.

Students in the treatment groups exhibited greater understanding and increased
use of software testing tools on their posttests than students in the control groups,
as well as a significant increase in knowledge from their pretests. These results are
reported in Table V and Figure 5, and supported by the results in Table X.

Interestingly, students in the treatment groups reported significantly lower confi-
dence of proficiency in test tool usage at the beginning of the semester than students
in the control groups. It is not clear why this is the case, but the significant increase
in their reported proficiency from before their use of WReSTT to after their use of
WReSTT raises some interesting questions for future research. It may be, for example,

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

Integrating Testing into Software Engineering Courses 18:23

that having a very low perception of one’s proficiency in testing tool usage itself may
be an influencing factor in how much effort is put toward increasing that proficiency.
Future studies could help answer this question.

Based on our results we cannot conclusively say that the use of WReSTT improves
students’ proficiency in using software testing tools, only that it increases their confi-
dence in using the testing tools. Given that most of the students are complete novices
when it comes to using testing tools, it is likely that the use of WReSTT does contribute
to improving actual proficiency.

Objective 4. Determine if students who use WReSTT will find it engaging and enjoy-
able to use.

Results indicate that students do find WReSTT an engaging and enjoyable learning
resource for software testing techniques and tools. Specifically, students indicated that
the tutorials in WReSTT helped them understand both software testing concepts and
tools, and that there are a sufficient number of tutorials in WReSTT. Students also
indicated that both versions of WReSTT helped them complete course tasks and earn a
better grade in the class. Regarding ease of use, students indicated that both versions
of WReSTT are easy to use and pleasant and would recommend use of the sites to other
students.

Overall, students’ responses indicate that they have a more positive view of WReSTT
V2 than WReSTT V1. As can be seen in Table VII and Figure 7, for all but two of
the questions regarding the ease of use and usefulness of the sites, students rated
WReSTT V2 significantly higher than WReSTT V1. The only two areas in which there
was no difference in student responses was in ease of finding needed information and
the effectiveness of the information available helping them complete their tasks and
scenarios. Using the results from this study, WReSTT V2 has been updated to reflect
the preference of the students.

Students do find that the use of a collaborative learning environment in WReSTT
motivates them to visit the site and complete assignments. As can be seen in Table IX
and Figure 8, students indicated at high levels that the use of virtual points and event
streaming encouraged both them and their fellow team members to complete tasks in
WReSTT.

Objective 5. Determine if students who use WReSTT will be more likely to employ
the use of software testing tools in their SE team project than students who do not use
WReSTT.

As can be seen in Table X, students who used WReSTT tended to use testing tools
in their team project more often than students who did not use WReSTT. Of the nine
teams in the control groups, only one team used a testing tool in their class project,
whereas seven out of the nine teams in the treatment groups used testing tools. The
table also shows the number of test cases used during system and subsystem testing,
including the number that passed and failed. Of the seven teams that used testing tools,
three reported code coverage results obtained during subsystem testing as shown in
Table X. Two of the teams in the TG2 (summer 2012) did not complete the project and
did not report usage of the testing tools.

Students were required to demonstrate their knowledge of testing tools during the fi-
nal class presentation as a means to validate their use of the testing tools. Based on the
observed presentations, students demonstrated that they understood how to use the
various features in the JUnit framework, including setting up and tearing down test en-
vironments, creating stubs and drivers, and explaining why some parts of the test code
were not covered. It should be noted that one team in the control group that used testing
tools included a student who took the software testing class in a previous semester.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

18:24 P. J. Clarke et al.

A review of the artifacts containing testing code provided further evidence that
students who used the testing tools were able to write more complete test cases, as
reflected in the system documentation. In addition, these students were able to use the
assert statements, based on the expected results of the test case, to determine if the
test passed or failed. They also used one test class in most cases as the test driver for
subsystem testing, making use of the test setup and tear down methods provided by
the testing framework.

Students who did not use testing tools used “print” statements and integer codes to
determine if test cases passed or failed. For example, during unit testing, Team 3 from
CG2 (spring 2012) returned a series of numeric codes to signal the correctness of the
test cases, such as –2 incorrect input and –3 connection error, as well as used “print”
statements to echo output to the screen. Clearly, this approach to unit testing is more
time consuming, especially during regression testing.

Students were not only more knowledgeable about software testing, but because of
the socially competitive nature of the Web site, students were also more willing to learn
about and apply their testing knowledge even though they were not required to do so
in their projects. This willingness to learn more was reflected in the fact that some
students use testing tools for which there are currently no tutorials in WReSTT, such
as Xcode CoveryStory [CoverStory Team 2013].

Threats to validity. The threats to validity of this study are related mainly to the
selection of the samples for the control and treatment groups, and the instructors who
were assigned to the study. Table II shows the sample size used in the study, and there
is 50% and 41% lower participation for the two control groups, respectively. The lower
participation can be explained in part due to students dropping the course during the
semester. For example, the enrollment at the end of the spring 2011 semester was 25
students, and for the spring 2012 semester, enrollment included 18 students. There
was also the issue of different students taking the pretest and posttest. For example, in
spring 2011, 3 students took the pretest but did not take the posttest, and 2 students
took the posttest but not the pretest. For spring 2012, 1 student took the pretest but did
not take the posttest, and 7 students took the posttest but not the pretest. An analysis
of the posttest results of students in the spring 2012 who took the posttest but not the
pretest would not have significantly changed the posttest scores.

Results of the pre/posttest shown in Table III suggest that the control and treatment
groups were taken from two different populations. This is mainly due to the mean
pretest scores for the control groups being higher than the treatment groups. The
students selected for the study were assigned based on the semester in which they took
the SE class. FIU is a commuter school, and with a large proportion of nontraditional
students, most FIU students take classes year-round. There is no difference in the
student body in the fall, spring, and summer sessions.

The anomaly of the scores in the pretest for the control groups was that in spring
2012, two students in the SE class took the undergraduate software testing class in
fall 2011, and one student works in industry as a software tester. There was also one
student in the summer 2011 class who took the undergraduate software testing class in
fall 2010. If the students who previously took the software testing class were removed
from the raw data, then the mean scores for the pretest in Tables III through VI would
be closer together. For example, the mean scores for the pretest control and treatment
groups in Table III would only differ by 0.8.

Three different instructors were used during the study—one each for the spring 2011
and 2012 control groups, and one for the summer 2011 and 2012 treatment groups. The
instructors used in the study were based on the departmental assignment. The major
threat to validity of the instructor assignment was that the instructor assigned to the

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

Integrating Testing into Software Engineering Courses 18:25

treatment groups was an experienced software testing instructor and tended to place
more emphasis on verification and validation in the SE course. To mitigate this threat,
the instructors used the same class material and structure for the project deliverables.

5. RELATED WORK

In this section, we present the related work on the approaches used to introduce testing
into programming courses and compare several of the online resources that contain
software testing learning materials to WReSTT. We also compare our work to systems
that use collaborative learning in CS/IT.

5.1. Testing in Programming Classes

Integrating testing into courses. There have been several approaches used to integrate
testing into courses at various stages in the CS/IT curriculum. Goldwasser [2002]
integrated black box testing into a programming course by encouraging students to
submit a test set with each programming assignment. Barbosa et al. [2003] describe
an approach to introduce testing earlier in the software development process that
focuses on students recognizing the importance of the testing activity and motivating
students to use testing ideas in their projects. Frezza [2002] describes an approach
that integrates testing into an introductory software design course. This work was
motivated by the fact that integrating testing and design topics allows students to
experience different design concepts and reinforces the importance of testing. Janzen
and Saiedian [2006] present TDL as a pedagogical tool that can be incorporated into
multiple levels of the CS and SE curricula. TDL is a pedagogical approach used to
teach TDD and has the following objectives: (1) teach testing for free, (2) encourage the
use of TDD, (3) improve student programming ability, and (4) improve the quality of
the design and correctness of programs.

Unlike the approaches by Barbosa et al. [2003], Frezza [2002], and Janzen and
Saiedian [2006], our approach uses a minimally disruptive approach from the instruc-
tor’s point of view. That is, there is no need for major changes to the syllabus or
restructuring of the course to integrate testing. The onus is on the students to gain
the testing knowledge from WReSTT. Similar to the approach of Goldwasser [2002],
we advocate that students submit the test set with the programs that they are testing,
as well as the code coverage results for the test set. We believe that WReSTT can be
integrated effectively in the the preceding approaches and can provide supplemental
and engaging learning opportunities for students.

Encouraging testing using grading tools. One of the most successful projects on
using grading tools to assist instructors and students is the Web-Based Center for
Automated Testing (Web-CAT) developed by Edwards [2003]. Several researchers who
included testing early in the curriculum [Goldwasser 2002; Edwards 2003; Jones 2000]
identified the need for tools that support automatic grading of student assignments.
Software testing can play an important role in learning to develop software, but only
when students are provided with a special environment that provides frequent feedback
on their performance in forming hypotheses and verifying them. Although Web-CAT is
very good for automated assessment of student programs, it does not claim to provide
tutorials on (1) how to generate test cases, (2) how code coverage works, or (3) using
functional testing tools (see Table I). In our opinion, WReSTT can complement Web-CAT
by providing students with tutorials to help them better understand the testing process.

5.2. Online Testing Resources

There are several online resources that provide access to learning materials on soft-
ware testing to the academic community. During the past decade, Kaner et al. [2001]

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

18:26 P. J. Clarke et al.

developed the Center for Software Testing Education and Research (CSTER), which
has a large repository of content on software testing including video lectures, practice
quizzes, drills, and other assessment materials. Williams [2010] developed a module on
software testing (Module 7) in OpenSeminar, a Web-based open courseware platform
that contains examples, lab exercises, lectures (slides), and readings.

Cassel et al. [2012] coordinate the activities of the Ensemble Computing Portal,
which is a U.S. National Science Foundation (NSF)-sponsored National Science Dig-
ital Library (NSDL) Pathways project for computing education materials. Ensemble
provides access to other repositories containing software testing materials such as
SWENET [Lutz et al. 2010] and CITIDEL [CITIDEL Team 2010]. Garousi [2010] de-
scribes a Web repository developed by the Software Quality Engineering Research
Group (SoftQual) that contains lab exercises focused on tools that support testing
used at a cross section of SE programs in North America. These tools include Bugzilla,
JUnit, CodeCover, CodeLipse, Rational Functional Tester, and MuClipse [Garousi 2010;
Software Quality Engineering Research Group (SoftQual) 2012].

Few, if any, of the aforementioned online software testing repositories provide facili-
ties for instructors to monitor how students in their classes use the provided resources,
such as tutorials and quizzes. In addition, none of them provide students with a collabo-
rative learning experience where students need to work together in teams to accomplish
a task and earn virtual points based on their performance. The repositories mentioned
earlier are more static when compared to WReSTT, which is dynamic with respect to
student and instructor interaction. Note, however, that many of these repositories pro-
vide valuable resources, such as tutorials (using different formats), quizzes, and labs
on a variety of testing topics that can be accessed by WReSTT.

5.3. Collaborative Learning

Talon et al. [2009] describe their approach to software testing using a platform that sup-
ports collaborative activities. The authors applied the MAETIC pedagogical method,
which organizes project-based pedagogy. To support the MAETIC approach, the Coop-
erative Layer Supporting Distributed Activities (CooLDA) platform is used to support
the collaborative activities. The basic idea of the approach is to use CooLDA to keep
track of the tools associated with the specific activities of a software testing project. The
testing activities for the project, the source code to be tested, software requirements,
and functional specifications are all managed by CooLDA.

The popularity and acceptance of e-learning, as well as the growing availability
of cyberinfrastructure Ramı́rez and Fox [2011], has driven the need for tools to sup-
port collaboration learning. Li et al. [2008] survey several of the technology issues,
including some of the tools, needed to support distributive and collaborative learning.
Several of the issues addressed by the authors include standards used to create learn-
ing materials, hosting of e-learning systems as the content and user base continue to
grow, support for content delivery using different multimedia formats, and support for
synchronous and asynchronous learning modes. These tools included Moodle, ANGEL
Learning Management Suite (LMS), and ATutor.

WReSTT is different from CooLDA [Talon et al. 2009] because it does not provide
support for project management activities or keep track of the tools students used to
test their programs. The current version of WReSTT (V2) incorporates many of the
ideas presented by Talon et al. [2009] and addresses several of the issues discussed by
Li et al. [2008]. These ideas include keeping track of student activities as they access the
various learning materials, using the Web as a platform to host learning materials and
as a collaborative platform, and providing learning materials in different formats. In
the future, we plan to transform existing materials and create new learning materials

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

Integrating Testing into Software Engineering Courses 18:27

using a standard format (e.g., learning objects) so that the materials can be used by
other systems.

6. CONCLUSIONS

In this article, we described a minimally disruptive approach to integrating software
testing into SE courses. The approach presented is not a replacement for existing mod-
ules taught in SE courses but is meant to supplement them by providing a collaborative
learning environment that engages students and encourages software testing learning
activities. These learning materials are hosted in a Web-based repository referred to as
WReSTT. To determine the impact that using WReSTT had on students’ ability to learn
software testing concepts and testing tools, we conducted studies involving students in
SE classes over a period of 2 years.

The studies involved two versions of WReSTT, the first version (V1) with only tutori-
als on testing tools, and the second version (V2) containing the tutorials from V1 with
added collaborative learning and social engagement features. The results of the studies
showed that (1) WReSTT as a teaching tool for students in SE courses can improve
their understanding of software testing techniques, (2) WReSTT as a teaching tool for
students in SE courses can improve their knowledge and use of testing tools, and (3) the
changes made from WReSTT V1 to V2 have improved students’ understanding and use
of software testing concepts and tools. Result (3) is particularly important because of
the use of the collaborative learning features and improved usability in WReSTT V2.

As a result of the studies performed in this project, several areas of future research
have been identified. These research directions would require extending the function-
ality of WReSTT and using more direct measures in the studies. We plan to extend the
learning materials in WReSTT and restructure them so that the tutorials on testing
concepts and tools are organized into learning objects. Learning objects would provide
a more structured approach to students who plan to use WReSTT as an independent
learning resource. Using more direct measures, such as observing students using the
testing tools, would allow for a more in-depth and detailed analysis on the various
components that are part of learning software testing, such as students’ ability to use
black box and/or white box testing techniques. In addition, we can perform more fo-
cused analyses on detailed usage information of WReSTT, student team composition,
and social engagement levels.

APPENDIX

A. PRETEST/POSTTEST

This test will NOT impact your course grade.
ID Number (DO NOT use your name):

1. What is the main objective of program testing?
[1 point]
Ans: To find bugs/errors/faults in a program or any sentence that conveys this
idea.

2. (a) Identify all the testing techniques you have used to create test cases:
[1 point for each correct answer]
Ans: (a) Equivalence partitioning, boundary analysis, random selection,
state-based, among others.

(b) Write test cases to test the code provided below. Identify the testing technique
used to generate the test case.
//Method to withdraw money from a bank account

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

18:28 P. J. Clarke et al.

//The following variables are defined as follows: requiredMin = 50.0 and balance
= 100;
public void withdraw (double amount) {

if ((balance - amount) < requiredMin)
System.out.println(‘‘Insufficient funds’’);

else
balance = balance - amount;

}

.
Input Value Expected Output Values Testing Technique

amount amount balance requiredMin

[1 point for each complete test case]
Ans: (b)(i) Numeric values for all the attributes in the table were given.

[1 point for each correct test case]
(ii) Values were checked for correctness based on the semantics of the
method.

[1 point for each correct testing technique]
(iii) Any of the answers in 2(a).

[1 point for matching correct testing technique to test case]
(iv) The input value provided a guide to whether or not a particular
testing technique was used, e.g., amount = 49.9 would signify boundary
analysis, amount = –1 equivalence partitioning

3. Have you ever used tools to support testing of programs? Circle your answer:
Yes No

[1 point for Yes]

4. If you have answered “Yes” to Question (3), answer the following questions:

a. List the names of the tools you have used:
[1 point for each correct tool listed]

Ans: JUnit, PhPUnit, OCUnit, GHUnit, Visual Studio Unit Test, IBM
Rational Functional Tester (RTF), SWAT, Cobertura, EclEmma,

CoverStory
b. List one tool in each of the following categories that you have used and indicate

your level of proficiency corresponding to each tool on a scale of 1–5 with 1 =
barely competent and 5 = extremely proficient:

[1 point for each correct tool listed per category; points = proficiency score, if correct
tool listed]

.Category T ool(s) Prof iciency

i Unit Testing JUnit, PhPUnit, OCUnit, GHUnit, Visual Studio
Unit Test

ii Functional Testing IBM Rational Functional Tester (RFT), SWAT
iii Code Coverage Cobertura, EclEmma, CoverStory

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

Integrating Testing into Software Engineering Courses 18:29

5. Do you know of any online resources that provide information on software testing?
Yes No

[1 point for Yes]

6. If you have answered “Yes” to Question (5), answer the following questions:

a. State the names of online resources.
[1 point for stating a correct online resource]

Ans: WReSTT, Apple Developer, Wikipedia, YouTube, Udacity, among
others

b. State the type of materials (notes, lab exercises, tutorials, etc.) found at each
resource listed above.
[1 point for stating a valid material type]

Ans: Tutorials, Video Tutorials, Tool Documentation, Quizzes, Notes on
Testing, among others

7. How beneficial do you think it is to use tools to support testing of your programming
assignments? Use a scale of 1–5 with 1 = Not beneficial and 5 = Extremely
beneficial

8. If you answered 2 or above to Question (7), state one reason for your answer.

B. STUDENT SURVEY

This survey will NOT impact your course grade.

Panther ID Number (DO NOT use your name):

1. Have you ever used a learning resource other than WReSTT to learn about testing
concepts or testing tools? Please circle your answer: Yes No

You have been exposed to two versions of WReSTT, version 1 (version with no points)
and version 2 (version with points). Please use the following scale and complete ques-
tions 2–15: 1 = Strongly Disagree, 2 = Disagree, 3 = Neither Agree nor Disagree,
4 = Agree, 5 = Strongly Agree, NA = Not Applicable. Please circle the appropriate
answer.

.

Rating
Overall Reaction to Web Sites V1 V2

2 Overall, I am satisfied with how easy it is to use the Web site.
3 It is simple to use the Web site.
4 I feel comfortable using the Web site.
5 It was easy to learn to use the Web site.
6 I believe I became productive quickly using the Web site.
7 The information (such as online help, on-page messages, and other documentation)

provided with the Web site is clear.
8 It is easy to find the information I need.
9 The information is effective in helping me complete the tasks and scenarios.
10 The interface of the Web site is pleasant.
11 I like using the interface of this Web site.
12 The Web site has all the functions and capabilities I expect it to have.
13 I believe that the Web site helped me earn a better grade.
14 I would recommend the Web site to fellow students.
15 Overall, I am satisfied with the Web site.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

18:30 P. J. Clarke et al.

Please use the following scale and complete questions 16–21: 1 = Strongly Disagree,
2 = Disagree, 3 = Neither Agree nor Disagree, 4 = Agree, 5 = Strongly Agree, NA = Not
Applicable.

.Testing-Related Questions Rating
16 The tutorials in WReSTT helped me to better understand testing concepts.
17 The tutorials in WReSTT helped me to better understand how to use unit testing

tools.
18 The tutorials in WReSTT helped me to better understand how to use code coverage

testing tools.
19 The tutorials in WReSTT helped me to better understand how to use functional testing

tools.
20 The number of tutorials in WReSTT is adequate.
21 I would have used testing tools in my project if WReSTT did not exist.

The following questions are related to WReSTT Version 2 only. Please use the following
scale and complete questions 22–26: 1 = Strongly Disagree, 2 = Disagree, 3 = Neither
Agree nor Disagree, 4 = Agree, 5 = Strongly Agree, NA = Not Applicable.

.Collaborative Learning–Related Questions Rating
22 The use of virtual points in WReSTT V2 encouraged me to visit the Web site and

complete the tasks.
23 The use of virtual points in WReSTT V2 encouraged my team to visit the Web site

and complete the tasks.
24 The event stream showing the activities of the other members in the class encouraged

me to complete my tasks in WReSTT V2.
25 The event stream showing the activities of the other members in the class encouraged

my team to complete my tasks in WReSTT V2.
26 Our team devised a plan to get the maximum number of points in WReSTT V2.

Open ended questions:

27. Compare your experience using WReSTT version 1 and WReSTT version 2:

(a) What did you like more in WReSTT version 1 than WReSTT version 2?
(b) What did you like more in WReSTT version 2 than WReSTT version 1?

28. List any other features you would like to see in WReSTT version 2.

29. State your team number and the number of virtual points you have.
Team number: Virtual Points: (as a percentage)

30. Any other comments:

ACKNOWLEDGMENT

We would like to thank Dionny Santiago and Yesenia Sosa for their work on developing WReSTT V2. We
would also like to acknowledge Frank Hernandez and Xabriel J Collazo-Mojica for assisting with the studies
in the spring of 2011 and 2012, respectively.

REFERENCES

ACM/IEEE-CS Interim Review Task Force. 2008. Computer Science Curriculum 2008: An Interim Revision
of CS 2001. Retrieved August 7, 2014, from http://www.acm.org/education/curricula/ComputerScience
2008.pdf.

Paul Ammann and Jeff Offutt. 2008. Introduction to Software Testing. Cambridge University Press,
New York, NY.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

http://www.acm.org/education/curricula/ComputerScience ignorespaces 2008.pdf
http://www.acm.org/education/curricula/ComputerScience ignorespaces 2008.pdf

Integrating Testing into Software Engineering Courses 18:31

Tara Astigarraga, Eli M. Dow, Christina Lara, Richard Prewitt, and Maria R. Ward. 2010. The emerg-
ing role of software testing in curricula. In Transforming Engineering Education: Creating Inter-
disciplinary Skills for Complex Global Environments, 2010 IEEE. IEEE, Los Alamitos, CA, 1–26.
DOI:http://dx.doi.org/10.1109/TEE.2010.5508833

Ellen Francine Barbosa, José Carlos Maldonado, Richard LeBlanc, and Mark Guzdial. 2003. Introducing
testing practices into objects and design course. In Proceedings of the 16th Conference on Software
Engineering Education and Training. IEEE, Los Alamitos, CA, 279–286.

Victor R. Basili, Richard W. Selby, and David H. Hutchens. 1986. Experimentation in software engineer-
ing. IEEE Transactions on Software Engineering SE-12, 7, 733–743. DOI:http://dx.doi.org/10.1109/
TSE.1986.6312975

Sebastian Bergmann. 2013. PHPUnit. Retrieved August 7, 2014, from https://github.com/
sebastianbergmann/phpunit/.

Robert V. Binder. 1999. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison Wesley
Longman, Boston, MA.

Pierre Bourque and Robert Dupuis. 2004. Guide to the Software Engineering Body of Knowledge 2004 Version.
IEEE, Los Alamitos, CA.

Bernd Bruegge and Allen H. Dutoit. 2009. Object-Oriented Software Engineering Using UML, Patterns, and
Java (3rd ed.). Prentice Hall, Upper Saddle River, NJ.

Lilian Cassel, Lois Delcambre, Edward Fox, and Richard Furuta. 2012. Ensemble: Computing Portal Con-
necting Computing Educators. Retrieved August 7, 2014, from http://www.computingportal.org/.

Yaofei Chen, Rose Dios, Ali Mili, Lan Wu, and Kefei Wang. 2005. An empirical study of programming
language trends. IEEE Software 22, 3, 72–78.

CITIDEL Team. 2010. CITIDEL: Computing and Information Technology Interactive Digital Educational
Library. Retrieved August 7, 2014, from http://www.citidel.org/.

Mike Clark. 2012. JDepend. Retrieved August 7, 2014, from http://clarkware.com/software/JDepend.html.
Peter J. Clarke, Andrew A. Allen, Tariq M. King, Edward L. Jones, and Prathiba Natesan. 2010. Using a

Web-based repository to integrate testing tools into programming courses. In Proceedings of the ACM
OOPSLA 2010 Companion (SPLASH’10). ACM, New York, NY, 193–200.

Peter J. Clarke, Jairo Pava, Debra Davis, and Tariq M. King. 2012. Using WReSTT in SE courses: An
empirical study. In Proceedings of the 43rd SIGCSE Conference. ACM, New York, NY, 307–312.

Peter J. Clarke, Jairo Pava, Yali Wu, and Tariq M. King. 2011. Collaborative Web-based learning of testing
tools in SE courses. In Proceedings of the 42nd SIGCSE Conference. ACM, New York, NY, 147–152.

CNN. 2012. Is Knight’s $440 million glitch the costliest computer bug ever? (2012). CNN Money,
August 9. Retrieved August 7, 2014, from http://money.cnn.com/2012/08/09/technology/knight-expensive-
computer-bug/index.html.

CNSS. 2005. Software 2015: A National Software Strategy to Ensure U.S. Security and Competitiveness.
Technical Report. Center for National Software Studies, Upper Marlboro, MD.

Cobertura Team. 2012. Cobertura. Retrieved August 7, 2014, from http://cobertura.sourceforge.net/.
CoverStory Team. 2013. CoverStory. Retrieved August 7, 2014, from http://code.google.com/p/coverstory/.
Tony Cowling. 2012. Stages in teaching software testing. In Proceedings of the 2012 International

Conference on Software Engineering (ICSE’12). IEEE, Los Alamitos, CA, 1185–1194. Available at
http://dl.acm.org/citation.cfm?id=2337223.2337379.

David C. Crowther and Peter J. Clarke. 2005. Examining software testing tools. Dr. Dobbs Journal 373, 1,
26–33.

Chetan Desai, David S. Janzen, and John Clements. 2009. Implications of integrating test-driven develop-
ment into CS1/CS2 curricula. ACM SIGCSE Bulletin 41, 1, 148–152.

Adrián Domı́nguez, Joseba Saenz de Navarrete, Luis de Marcos, Luis Fernández-Sanz, Carmen Pagés,
and José-Javier Martı́nez-Herráiz. 2013. Gamifying learning experiences: Practical implications and
outcomes. Computers and Education 63, 380–392.

Drupal Community. 2012. Drupal. Retrieved August 7, 2014, from http://drupal.org/.
Thomas Dvornik, David S. Janzen, John Clements, and Olga Dekhtyar. 2011. Supporting introductory test-

driven labs with WebIDE. In Proceedings of the 24th IEEE-CS Software Engineering Education and
Training Conference (CSEET’11). IEEE, Los Alamitos, CA, 51–60.

Stephen H. Edwards. 2003. Rethinking computer science education from a test-first perspective. In Com-
panion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’03). ACM, New York, NY, 148–155.

Facebook Team. 2012. Facebook. Retrieved August 7, 2014, from http://www.facebook.com/.

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

http://dx.doi.org/10.1109/TEE.2010.5508833
http://dx.doi.org/10.1109/TSE.1986.6312975
http://dx.doi.org/10.1109/TSE.1986.6312975
https://github.com/sebastianbergmann/phpunit/
https://github.com/sebastianbergmann/phpunit/
http://www.computingportal.org/
http://www.citidel.org/
http://clarkware.com/software/JDepend.html
http://money.cnn.com/2012/08/09/technology/knight-expensive-computer-bug/index.html
http://money.cnn.com/2012/08/09/technology/knight-expensive-computer-bug/index.html
http://cobertura.sourceforge.net/
http://code.google.com/p/coverstory/
http://dl.acm.org/citation.cfm?id$=$2337223.2337379
http://drupal.org/
http://www.facebook.com/

18:32 P. J. Clarke et al.

Michael Feathers. 2012. CppUnit. Retrieved August 7, 2014, from http://sourceforge.net/projects/cppunit/.
Stephen Frezza. 2002. Integrating testing and design methods for undergraduates: Teaching software testing

in the context of software design. In Proceedings of the 32nd Annual Frontiers in Education, 2002
(FIE’02), Vol 3. IEEE, Los Alamitos, CA, SIG-1–SIG-4.

Michael P. Gallaher and Brian M. Kropp. 2011. The Economic Impacts of Inadequate Infrastructure for
Software Testing. Retrieved August 7, 2014, from http://www.rti.org/pubs/software_testing.pdf.

Erich Gamma and Kent Beck. 2012. JUnit. Retrieved August 7, 2014, from http://www.junit.org/.
Vahid Garousi. 2010. An open modern software testing laboratory courseware—an experience report. In

Proceedings of the 23rd IEEE-CS Software Engineering Education and Training Conference (CSEET’10).
IEEE, Los Alamitos, CA, 177–184.

Michael H. Goldwasser. 2002. A gimmick to integrate software testing throughout the curriculum. In Pro-
ceedings of the 33rd SIGCSE Conference. ACM, New York, NY, 271–275.

Starr R. Hiltz. 1998. Collaborative learning in asynchronous learning networks: Building learning commu-
nities. (1998). In Proceedings of WEB98.

Marc R. Hoffmann. 2012. EclEmma. Retrieved August 8, 2014, from http://www.eclemma.org/.
IBM. 2012. Rational Functional Tester. Retrieved August 7, 2014, from http://www-01.ibm.com/software/

awdtools/tester/functional/.
David S. Janzen and Hossein Saiedian. 2006. Test-driven learning: Intrinsic integration of testing

into the CS/SE curriculum. ACM SIGCSE Bulletin 38, 1, 254–258. DOI:http://dx.doi.org/10.1145/
1124706.1121419

Edward L. Jones. 2000. Software testing in the computer science curriculum—a holistic approach. In Pro-
ceedings of the Australasian Conference on Computing Education (ACSE’00). ACM, New York, NY,
153–157.

Cem Kaner, James Bach, and Bret Pettichord. 2001. Lessons Learned in Software Testing. John Wiley &
Sons, New York, NY.

Timothy C. Lethbridge, Jorge Diaz-Herrera, Richard J. LeBlanc Jr., and J. Barrie Thompson. 2007. Improving
software practice through education: Challenges and future trends. In Proceedings of the 2007 Future of
Software Engineering (FOSE’07). IEEE, Los Alamitos, CA, 12–28.

Cen Li, Zhijiang Dong, Roland H. Untch, and Michael Chasteen. 2013. Engaging computer science students
through gamification in an online social network based collaborative learning environment. Interna-
tional Journal of Information and Education Technology 3, 1, 72–77.

Qing Li, Rynson W. H. Lau, Timothy K. Shih, and Frederick W. B. Li. 2008. Technology supports for dis-
tributed and collaborative learning over the Internet. Transactions on Internet Technology 8, 2, Article
No. 5. DOI:http://dx.doi.org/10.1145/1323651.1323656

Michael J. Lutz, W. Michael McCracken, Susan Mengel, Mark Sebern, Greg W. Hislop, and Thomas
B. Hilburn. 2010. SWENET—SEEK Category: Software Verification and Validation (VAV). Retrieved
August 7, 2014, from http://www.swenet.org/browseModules.aspx?categoryID=11.

Thomas W. Malone. 1980. What makes things fun to learn? Heuristics for designing instructional computer
games. In Proceedings of the 3rd ACM SIGSMALL Symposium and the 1st SIGPC Symposium on Small
Systems (SIGSMALL’80). ACM, New York, NY, 162–169. DOI:http://dx.doi.org/10.1145/800088.802839.

Aditya P. Mathur. 2008. Foundations of Software Testing. Pearson Education, Delhi, India.
Microsoft Corporation. 2013. Using Testing Tools in Visual Studio Professional Edition. Retrieved August 7,

2014, from http://msdn.microsoft.com/en-us/library/bb385902(v=VS.90).aspx.
Glenford J. Myers. 2004. Art of Software Testing (2nd ed.). John Wiley & Sons, New York, NY.
John Neter, William Wasserman, and Michael H. Kutner. 1990. Applied Linear Statistical Models. Irwin

Press, Boston, MA.
William Perry. 2006. Effective Methods for Software Testing (3rd ed.). John Wiley & Sons, New York, NY.
Shari Lawrence Pfleeger and Joanne M. Atlee. 2009. Software Engineering: Theory and Practice (4th ed.).

Pearson Education, Cranbury Township, NJ.
Alex Ramı́rez and Geoffrey C. Fox. 2011. A Report of the National Science Foundation Advisory Committee

for Cyberinfrastructure Task Force on Cyberlearning and Workforce Development. Retrieved August 7,
2014, from http://www.nsf.gov/cise/aci/taskforces/TaskForceReport_Learning.pdf.

Sen:te. 2013. Moving OCUnit tests between Logic and Application tests. Retrieved August 7, 2014, from
http://www.sente.ch/?p=276&lang=en.

Terry Shepard, Margaret Lamb, and Diane Kelly. 2001. More testing should be taught. Communications of
the ACM 44, 6, 103–108. DOI:http://dx.doi.org/10.1145/376134.376180

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

http://sourceforge.net/projects/cppunit/
http://www.rti.org/pubs/software_testing.pdf
http://www.junit.org/
http://www.eclemma.org/
http://www-01.ibm.com/software/awdtools/tester/functional/
http://www-01.ibm.com/software/awdtools/tester/functional/
http://dx.doi.org/10.1145/1124706.1121419
http://dx.doi.org/10.1145/1124706.1121419
http://dx.doi.org/10.1145/1323651.1323656
http://www.swenet.org/browseModules.aspx?categoryID$=$11
http://dx.doi.org/10.1145/800088.802839
http://msdn.microsoft.com/en-us/library/bb385902(v$=$VS.90).aspx
http://www.nsf.gov/cise/aci/taskforces/TaskForceReport_Learning.pdf
http://www.sente.ch/?p$=$276&lang$=$en
http://dx.doi.org/10.1145/376134.376180

Integrating Testing into Software Engineering Courses 18:33

Charlie Y. Shim, Mina Choi, and Jung Yeop Kim. 2009. Promoting collaborative learning in software en-
gineering by adapting the PBL strategy. In Proceedings of the WASET International Conference on
Computer and Information Technology (ICCIT ’09). IEEELos Alamitos, CA, 1167–1170.

Sidney Siegel and N. John Castellan. 1988. Nonparametric Statistics for the Behavioral Sciences (2nd ed.).
McGraw-Hill, New York, NY.

Barbara Leigh Smith and Jean T. MacGregor. 1992. What is collaborative learning? In Collaborative Learn-
ing: A Sourcebook for Higher Education, A. S. Goodsell, M. R. Maher, and V. Tinto (Eds.). National
Center on Postsecondary Teaching, Learning, and Assessment, University Park, PA.

Software Quality Engineering Research Group (SoftQual). 2012. SoftQual Repository of Software
Testing Laboratory Courseware. Retrieved August 7, 2014, from http://www.softqual.ucalgary.ca/
projects/testing_labs/.

Ian Sommerville. 2004. Software Engineering (7th ed.). Pearson Addison Wesley, Boston, MA.
Bénédicte Talon, Dominique Leclet, Arnaud Lewandowski, and Grégory Bourguin. 2009. Learning software

testing using a collaborative activities oriented platform. In Proceedings of the 2009 9th IEEE Interna-
tional Conference on Advanced Learning Technologies (ICALT’09). IEEE, Los Alamitos, CA, 443–445.
DOI:http://dx.doi.org/10.1109/ICALT.2009.61

William Trochim. 2001. The Research Methods Knowledge Base (2nd ed.). Atomic Dog Publishing, Cincinnati,
OH.

Tom Tullis and Bill Albert. 2008. Measuring the User Experience: Collecting, Analyzing, and Presenting
Usability Metrics. Elsevier: Morgan Kaufmann, San Francisco, CA.

Ultimate Software. 2012. Simple Web Automation Toolkit. Retrieved August 7, 2014, from http://sourceforge.
net/projects/ulti-swat/.

Wikipedia. 2012. List of Software Bugs. Retrieved August 7, 2014, from http://en.wikipedia.org/wiki/List_of_
software_bugs.

Laurie Williams. 2010. Software Engineering: Testing. OpenSeminar. Retrieved August 7, 2014, from
http://openseminar.org/se/modules/7/index/screen.do.

Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell, and Anders Wesslén. 2000.
Experimentation in Software Engineering: An Introduction. Kluwer Academic Publishers, Norwell, MA.

WReSTT Team. 2012. WReSTT: Web-based Repository of Software Testing Tools. Retrieved August 7, 2014,
from http://wrestt.cis.fiu.edu/.

Received December 2012; revised April 2014; accepted April 2014

ACM Transactions on Computing Education, Vol. 14, No. 3, Article 18, Publication date: October 2014.

http://www.softqual.ucalgary.ca/projects/testinglabs/
http://www.softqual.ucalgary.ca/projects/testinglabs/
http://dx.doi.org/10.1109/ICALT.2009.61
http://sourceforge.net/projects/ulti-swat/
http://sourceforge.net/projects/ulti-swat/
http://en.wikipedia.org/wiki/Listofsoftwarebugs
http://en.wikipedia.org/wiki/Listofsoftwarebugs
http://openseminar.org/se/modules/7/index/screen.do
http://wrestt.cis.fiu.edu/

